skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang Xia, Peng Jiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. LU factorization for sparse matrices is an important computing step for many engineering and scientific problems such as circuit simulation. There have been many efforts toward parallelizing and scaling this algorithm, which include the recent efforts targeting the GPUs. However, it is still challenging to deploy a complete sparse LU factorization workflow on a GPU due to high memory requirements and data dependencies. In this paper, we propose the first complete GPU solution for sparse LU factorization. To achieve this goal, we propose an out-of-core implementation of the symbolic execution phase, thus removing the bottleneck due to large intermediate data structures. Next, we propose a dynamic parallelism implementation of Kahn's algorithm for topological sort on the GPUs. Finally, for the numeric factorization phase, we increase the parallelism degree by removing the memory limits for large matrices as compared to the existing implementation approaches. Experimental results show that compared with an implementation modified from GLU 3.0, our out-of-core version achieves speedups of 1.13--32.65X. Further, our out-of-core implementation achieves a speedup of 1.2--2.2 over an optimized unified memory implementation on the GPU. Finally, we show that the optimizations we introduce for numeric factorization turn out to be effective. 
    more » « less